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Trajectories of inertial spheroidal particles moving in a shear flow near a solid wall are
calculated numerically from the Stokes flow equations by computing the hydrodynamic
forces and torques acting on the particles. Near the wall these interactions cause
coupling between the particle’s rotational and translational motions. Due to this
coupling an inertial spheroid is shown to move along an oscillatory trajectory, while
simultaneously drifting towards the wall. This phenomenon occurs in the absence of
gravity as a combined effect of three factors : particle non-spherical shape, its inertia
and particle–wall hydrodynamic interactions. This drift is absent for inertialess
spheroids, and also for inertial spherical particles which move along flow streamlines.

The drift velocity is calculated for various particle aspect ratios γ and relaxation
times τ. An approximate solution, valid for small particle inertia is developed, which
allows the contribution of various terms to the drift velocity to be elucidated. It was
found that the maximum value of the drift velocity prevails for N(γ)γ#τsC 4, where s
is the shear rate and N(γ) is a decreasing function of γ, related to the particle–wall
hydrodynamic interactions. In the limiting cases of large and small inertia and also of
very long and thin spheroids, the drift vanishes.

Possible applications of the results are discussed in the context of transport of
micrometre particles in microgravity conditions. It is shown that the model used is
applicable for analysis of the deposition of aerosol particles with sizes above 10 µm
inhaled in the human respiratory tract in the absence of gravity.

1. Introduction

The transport of small particles in shear flows is a problem having numerous
applications in particle technology and various physiological and biological processes.
Most existing treatments pertain to spherical particles, because their geometry allows
relatively simple analytical solutions of their equations of motion to be obtained. Non-
spherical particles, such as blood cells, asbestos, cotton and wool fibres, clusters and
agglomerates are very common in many environmental industrial and physiological
processes. The motion of such particles may be fairly complicated, and is characterized
by rotation, tumbling, oscillations, drift, etc.

In many situations only the translational transport of non-spherical particles is the
objective of the treatment. One way to simplify the calculation of the particle
translational trajectory is to replace a non-spherical particle by either of its spherical
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60 E. Ga�ze and M. Shapiro

equivalents, i.e. one of the same volume or drag resistance. It turns out, however, that
such modelling of non-spherical particle motion can give results which are wrong in
quantitative terms and misleading in physical nature. One such case is the motion of
non-spherical particles in shear flows. Particle rotation induced by the shear (Jeffery
1922) may affect significantly its translational motion.

One of the specific subjects which is of interest in many applications is particle
transport in rectilinear flows, i.e. in tubes and channels. In the absence of external body
forces, or when the flow direction is vertical, it is natural to expect that the suspended
particles will move along straight trajectories. Sometimes, however, particles drift
across streamlines. The most notable example is the motion of spheroids in vertical
uniform flow, where they settle along inclined trajectories due to the gravity force
(Happel & Brenner 1983).

Other factors which might be responsible for particle drift in rectilinear flows are
particle and fluid inertia and proximity to solid walls. The effect of fluid inertia is
responsible for the lateral drift across streamlines of neutrally buoyant spheres in
Poiseuille flow (Segre! & Silberberg 1962a, b ; Ho & Leal 1974; Schonberg & Hinch
1989) and various non-spherical particles (Karnis, Goldsmith & Mason 1963, 1966).
Elliptical cylinders settling in a vertical channel migrate due to the orientational
dependence of particle hydrodynamic interactions, induced by fluid inertia (Huang,
Feng & Joseph 1994).

Hydrodynamic interactions with solid walls can significantly affect particle motion.
A wall retards the rectilinear motion of spheres flowing parallel to its surface. Near the
wall non-spherical particles move in a fairly complicated manner even for negligible
fluid and particle inertia. In particular, in the absence of body forces inertialess
spheroids moving in the shear flow near a solid wall can acquire a non-zero velocity
component normal to the wall surface (Gavze & Shapiro 1997). A dramatic effect of
particle–wall interactions was demonstrated by Sugihara-Seki (1993). He showed that
inertialess elliptical cylinders transported in narrow channels can either tumble or
oscillate in their rotational motion, depending on particle}channel aspect ratio. In both
cases the particles undergo a considerable side drift towards and from the wall. Similar
trajectories were calculated by Yang & Leal (1984) for inertialess slender bodies
moving in a shear flow near a fluid–fluid interface.

In the absence of particle and fluid inertia and also body forces, trajectories of
spheroidal particles in rectilinear flows near the wall, with all their complexity are,
however, periodic. That is, particles on the average move along the channel or tube
axis, executing zero net lateral drift. This is no longer true when either particle or fluid
inertia is included. Feng & Joseph (1995) showed that fluid unsteady (i.e. associated
with the ¥V}¥t term) and steady inertia (V[¡V term) can have accumulating long-time
effects on the particle motion. In particular, they showed that the quasi-steady-state
tumbling trajectory of inertialess spheroids calculated by Sugihara-Seki is unreachable
for comparable inertial particles. Feng & Joseph (1995) also examined the effect of fluid
and particle inertia on the rotation of prolate ellipsoids in a simple shear flow far from
walls. They found that the particle trajectories differ only slightly from the classical
Jeffery orbits of inertialess particles rotating in creeping flow. However, their particles
had very small inertia.

It follows thus that the effect of the inertia of non-spherical particle motion cannot
be neglected in calculating their trajectories. The motion of such inertial particles near
the wall has not been investigated. The objective of this article is to study the effect of
inertia on the motion of prolate spheroidal particles in a shear flow near a solid wall
in the absence of body forces. Explicitly, we look into the circumstances where the
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particle density is much larger than that of the fluid, so that the particle inertia is
important and the fluid’s inertia is negligible. Physically this situation corresponds to
aerosol particles (at normal or reduced air pressure) under microgravity conditions.
There is a continuing interest in the investigation of aerosol process in microgravity
because of the many fundamental physical phenomena, environmental and physio-
logical processes and potential industrial applications related to aerosol processing
(Holla$ nder 1993, 1996; Oostra et al. 1995, 1996).

We first address the problem of the particle motion far from the wall. The particle
centre of mass remains always at the same distance from the wall, but the rotational
motion strongly depends upon the particle inertia. Analysis of this motion helps to
understand the particle motion in the vicinity of the wall, which is the main goal of this
paper. Comparable inertialess particles in similar circumstances tumble along
oscillatory trajectories while periodically approaching and departing from the wall
surface. In such a motion even slight particle inertia can cause particle drift across the
streamlines. We show that for prolate spheroids such a drift does indeed occur in the
direction towards the wall which ultimately leads to their deposition on the wall
surface.

2. Model

Consider a simple shear flow U¯ sz, characterized by shear rate s, of a fluid with
viscosity µ in the plane semi-infinite region z" 0, over a flat wall z¯ 0 (see figure 1).
Let a prolate spheroidal particle with semi-axes a! c and uniformly distributed mass
m be immersed in this flow. We assume that diffusion, gravity and other external forces
are absent. The flow velocity field and trajectories of a spheroid are described by the
following equations:

ρ(¥V}¥tV[¡V)¯®¡pµ~#V, (1a)

¡[V¯ 0, (1b)

md�}dt¯F, (2)

Idω}dt®Iω¬ω¯L, (3)

V¯0 at z¯ 0, (4a)

V¯ i
x
sz, rrrU¢, (4b)

V¯ �ω¬r on the particle surface, (4c)

where r is the position vector in the particle-fixed coordinate frame, V and p are the
fluid velocity and pressure, respectively, ρ and µ are the fluid mass density and dynamic
viscosity, �¯ (u,w) and ω are the translational velocity of its centre and its rotational
velocity respectively, I is its inertia tensor, and F, L are the hydrodynamic force and
torque experienced by the spheroid in the fluid. These interactions are expressible via
the hydrodynamic stresses prevailing on the particle surface.

We assume that the particle is sufficiently small so that the characteristic Reynolds
number Re¯ sc#}νi 1, where ν¯µ}ρ is the fluid kinematic viscosity. That is, the
perturbation of the flow field induced by the particle motion is described by the quasi-
steady creeping flow Stokes equations. These are obtained by dropping the inertia
terms ¥V}¥t and V[¡V in (1a) :

µ~#V¯¡p, ¡[V¯ 0. (5a, b)

For simplicity we assume that the particle moves in the plane y¯ const., so that at any
time its position can be described by the Cartesian coordinates (x, z) and the angular
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F 1. A spheroidal particle moving in a simple shear flow near a wall.
Schematic of the flow arrangement.

coordinate θ. In these circumstances, the particle motion in the inertial coordinate
system can be described by the following system of equations (Gavze & Shapiro 1997) :
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In the above I
yy

is the yy-component of the particle inertia tensor, R¯R(x, z, θ) is the
position- and orientation-specific resistance matrix of a spheroid moving in a quiescent
fluid near a wall, and F

x
, F

z
, L

y
, are the corresponding components of the hydrodynamic

viscous drag force and torque, experienced by a spheroid fixed in a shear flow near a
wall. The resistance matrix is calculated from the hydrodynamic stresses. These are
obtained from the solutions of the creeping flow equations (5a, b), when the particle
moves with unit velocities in the respective directions x, z, θ, in an otherwise quiescent
fluid subject to the condition of vanishing velocity at infinity. The particle resistance
matrix in the present case has the following form (Gavze & Shapiro 1997) :

R¯µ

A
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xx
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K
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K
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C
yz

C
yz

C
yx

Ω
yy

C

D

(7)

where Kαβ(α,β¯x, z) are elements corresponding to the translational motion, Ω
yy

pertains to the particle rotational motion, and, finally C
yx

,C
yz

, are elements (of the
coupling tensor C ) describing coupling between the particle translation and rotation.

The hydrodynamic interactions F
x
,F

z
,L

y
are calculated by application of the

reciprocal theorem (Happel & Brenner 1983) to the hydrodynamic stresses acting on
the particle in a quiescent fluid and to the flow in which it is immersed, i.e. the simple
shear flow. Calculation of the above stresses, which is the most time-consuming task,
is done once for all subsequent calculations on a discrete grid in z, θ space by the
boundary element method (Gavze & Shapiro 1997). The values of the elements of the
resistance matrix, as well as the hydrodynamic interactions at intermediate points,
needed for the integration of equation of motions, are interpolated from the grid
points. Integration of the equations of particle motion by this method is extremely
efficient and requires a negligible computation time compared to other methods in
which the Navier–Stokes equations are subsequently solved, following the particle
motion.
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For axisymmetrical particles considered here, confined to the plane y¯ const., the
only relevant component of the inertia tensor is I

yy
¯m(a#c#)}5. The set of

rotational equations reduces to a single equation of rotation with respect to the y-axis,
coupled with the equations of the translational motion.

Define the following dimensionless quantities, designated below by primes:

x«¯x}c, z«¯ z}c, t«¯ ts, θ«¯ θ,

K!αβ ¯Kαβ}c, C!αβ ¯Cαβ}c#, Ω!αβ ¯Ωαβ}c$,

u«¯ u}cs, w«¯w}cs, ω«¯ω}s,

F !α ¯Fα}µsc#, L!α ¯Lα}µsc$.

5

6

7

8

(8)

Using the above one can rewrite (6a) in the dimensionless form
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In the above τ is the particle characteristic relaxation time:

τ¯ %

$
π

ρ
p
c#

µ
, (10)

where ρ
p

is the particle mass density. The product τs characterizes the particle inertial
properties, similarly to the Stokes number, used when a characteristic value of flow or
particle velocity is prescribed. The complex τs and the particle aspect ratio γ¯ a}c are
the dimensionless quantities governing its rotational and translational motions via the
basic set of equations (9) ; γ is implicitly included in these equations also via the
elements of the matrix R« and the forces F !

x
,F !

z
and L!

y
. Note that τs¯ (4π}3)Reρ

p
}ρ,

which means that for the small Re considered here, large τs values are obtained when
the density ratio ρ

p
}ρ greatly exceeds unity. This condition implies that the body forces

are normally important in the analysis of the particle motion (see Broday et al. 1998;
Gavze & Shapiro 1996). Nevertheless, in the present work the body forces are omitted,
so we concentrate on the role of particle inertia, its non-spherical shape and
particle–wall hydrodynamic interactions (see §7 for a discussion on this matter).

In the following we omit the primes for the sake of convenience. It follows from (9)
that each of the functions x, z, θ governing particle trajectories may be represented in
the following dimensionless form: f(t, z

!
,x

!
, θ

!
,γ, τ

s
), where the set (x

!
¯ 0, z

!
, θ

!
)

characterizes particle initial location and orientation.
With quantities F

x
, F

z
, L

y
determined from the solutions of the pertinent creeping

flow problems, (9) are numerically integrated by the Runge–Kutta method for various
initial distances z

!
, orientation angles θ

!
, aspect ratios and inertia parameters. The

ultimate goal of the calculations is the determination of the trajectories traced by the
spheroids’ centres of mass. The orientations are explicitly calculated at each integration
step in order to determine the (θ-dependent) corresponding forces and torque, as well
as the velocity components. Moreover, in cases where the particle ultimately touches
the wall, its orientation is necessary for calculating the terminal configuration
(stopping distance). The calculations terminate when the distance between the particle
surface and the wall is less than 0.01c.

3. Results

Figure 2(a, b) presents trajectories of the particles’ centres of mass vs. dimensionless
time t. In creeping flow spherical particles flowing near the wall move along the flow
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streamlines. So do inertialess (τs¯ 0) spheroidal particles far from the wall (see
figure 2a, dotted line). In the vicinity of the wall these particles execute oscillatory
translational–rotational motion, namely, beginning from any initial location and
orientation, their centres move periodically, with their average distance from the wall
being constant (see figure 2a).

Inertial spheroidal particles in the wall vicinity move in a different manner. They
rotate and move along oscillatory trajectories, while gradually drifting towards the
wall. This pattern is found to be independent of the initial orientation and distance z

!
from the wall. The rate of particle drift towards the wall depends on the parameters γ
and τs, as well as on the local distance z.

The role of the particle inertia may be observed by comparing figures 2(b) and 2(c)
both showing the trajectories of particles of the same aspect ratio, which begin their
motion from the same location. One can see in figure 2(c), that the particle with larger
inertia (τs¯ 100) hits the wall at about t¯ 350, whereas the less inertial particle (with
τs¯ 50) has not reached the wall even at t¯ 600.

The role of the particle aspect ratio may be elucidated by observing figures 2(c) and
2(d ). The particle with γ¯ 0.5 (see figure 2d ), drifts much faster than does the more
elongated particle of the same inertia (see figure 2c). Therefore the rate of drift
decreases with decreasing γ. This accords with the results of the analyses of the
particle–wall interactions (Gavze & Shapiro 1997), namely, with decreasing particle
aspect ratio the wall effect diminishes. Moreover, the rotational period of the more
elongated particle is much longer and the amplitude of its vertical oscillations is smaller
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than the comparable quantities of its less elongated counterpart. Increasing particle
aspect ratio beyond 0.5 ultimately results in a slower particle drift, since the particle
shape approaches spherical in which case the drift vanishes. With γ fixed, increasing
inertia parameter τs leads to an increase of the drift rate (see figure 2c, e). However,
beyond a certain critical value of τs of about 500 the drift rate decreases (see figure 2e,
f ).

Figure2(d ) shows theevolutionof thespheroid’sorientationduring itsapproachto the
wall. The spikes in the z-coordinate correspond to an almost vertical orientation, where
θ is about 15°. The period of rotation near the wall is larger than far from the wall.

The above results are summarized in figures 3 and 4, showing the non-dimensional
drift velocity w

d
. In the vicinity of the wall this quantity is a weak function of the

distance z (see figure 3). The drift increases as the particle approaches the wall. In the
range τs! 80, w

d
as a function of γ has a maximum at γC 0.5–0.6 (see figure 4). That
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is, the drift velocity decreases with particle geometry approaching spherical. It also
decreases with decreasing γ in the limit of oblong particles in accordance with force
analyses of Gavze & Shapiro (1997). Also, w

d
in this range of inertia parameter exhibits

a linear dependence on τs (see a discussion on this matter below).
Figure 5 presents w

d
as a function of γ#τs. This parameter appears in (11) of §4 as

a dimensionless coefficient multiplying the acceleration term. In this plot w
d

has
maxima for all γ at about γ#τsC 40–50, with the absolute maximum value
prevailing at about γC 0.2–0.3. Several calculated values of the drift velocity are
presented in table 1.

The set of curves plotted in figure 5 shows that in the two extremes (i) γ#τsj 1 and
(ii) γ#τsi 1 the effect of inertia and shape on w

d
are lumped within a sole parameter

γ#τs. This may be rationalized in the following way. The first limit (i) may be rewritten
in the form τsj 1, γ-fixed. In this case of very large inertia, the particle dynamics is
entirely determined by its rotational inertia. Below we show (see the Appendix) that
this is measured by γ#τs, which may be interpreted as the dimensional relaxation time
of the particle rotational motion. We also show that in this extreme the particle rotates
with a constant rotational velocity which differs very little from its value s}2 prevailing
far from the wall. The effect of the wall on such rotational motion is relatively weak,
which results in a slow velocity drift.
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The opposite limit (ii) can be realized by the two situations: γi 1, τs-fixed, and
τsi 1, γ-fixed. In the first of these cases the particle is very long}thin, in which
circumstances the wall effect is weak (Gavze & Shapiro 1997) and the effect of the shape
parameter is lumped within a parameter proportional to γ#τs (see the Appendix). The
other situation, namely τsi 1, γ-fixed, describes very light (almost inertialess)
particles, characterized by small drift velocities, the rotational motion of which is
affected by a single relaxation parameter γ#τs (see the Appendix).

We thus conclude that the largest drift velocities prevail for the intermediate values
of γ#τs, where in addition to this parameter, w

d
is also affected by the aspect ratio γ

via the hydrodynamic viscous interactions. The limiting cases of large and small inertia
and also of very long spheroids described above pertain to situations where the drift
is relatively slow.

Note that the approach of a spherical particle towards the plane wall is accompanied
by the so-called lubrication effect, which is an indefinite increase of the resistance force
F
z
, caused by squeezing the viscous liquid out of the particle–wall gap. In contrast to

the sphere, the approach to the wall of a rotating spheroid is governed by four forces
F
z
, K

xz
u, C

yz
ω and K

zz
w. In our earlier paper (Gavze & Shapiro 1997) we showed that

F
z
,K

xz
,C

yz
and K

xz
all increase as the particle approaches the wall like 1}z. Some of

these terms act in the wall direction and some in the opposite direction. The drift w
d

arises from the fact that the above forces are not balanced on the average. Alternative
interpretations and analyses of this phenomenon are given in the following sections.
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We also calculated other parameters of the particle trajectory, namely the oscillation
period and the amplitude. In particular, the dimensionless period is found to be a weak
function of the inertia parameter τs and the distance z. The oscillation amplitude was
found to increase with the particle approaching the wall. Further discussion of the
effects of these parameters is given in §4.

4. Discussion of the results

The drift of spheroidal particles described in the previous section is a phenomenon
arising from three basic factors : (i) the particle’s non-spherical form, (ii) its inertia and
(iii) coupled hydrodynamic interactions with the wall. All particles immersed in a shear
flow rotate. However, a spheroidal particle moving in the vicinity of a solid wall
acquires a velocity component perpendicular to its surface (Gavze & Shapiro 1997).

In the following we concentrate on the effect of inertia on particle rotational motion,
which provides a clue towards understanding of the drift phenomenon. Consider, first
the particle motion far from the wall, where the components C

yx
,C

yz
of the coupling

tensor C vanish, and translational and rotational motions are uncoupled. The
expressions for the non-vanishing terms of the tensor K, as well as for the force and
torque, may be found in Gavze & Shapiro (1997). Far from the wall the solution
u¯ z,w¯ 0, valid for inertialess particles, also satisfies the translational equations of
system ((11) below), written for inertial spheroids, but only for a sufficiently long time
tj τs. The rotational equation far from the wall has the form (see the Appendix)

τsA(γ)
d#θ

dt#


dθ

dt
¯

1

2 0
1®γ#

1γ#

cos 2θ11 , (11)

where A(γ) is a non-dimensional constant. In the inertialess case τs¯ 0 and the
solution of (11) is (Jeffery 1922)

ω¯
1

2 01
1®γ#

1γ#

cos 2θ1 , θ(t)¯ arctan 91γ tan 0 γt

1γ#
1: . (12)

Unlike the comparable solution for the translation motion, this one does not constitute
a limit cycle of (11). The solution of (11) with inertia included is of particular
importance, for it does not differ much from the solution of the angular equation of
system (9), in the region close to the wall. Asgharian & Anjilvel (1995) solved the
equations of particle rotation analogous to (11) in the absence of the wall. Here we, in
addition, present the solution of the full set of equations (9) near the wall for various
values of z, τs and γ.

Figure 6 presents the limit cycle of ω vs. θ calculated for γ¯ 0.5 from (11) (figure 6a,
b), as well as from the solution of the full system (9) near the wall at z¯ 1.15
(figure 6c, d ). One can observe a minor difference between the corresponding solutions
far from and near the wall, although this difference evolves as the particle drifts
towards the wall.

For each value of cos(2θ) there exist two values of ω in figure 6. The upper branches
correspond to positive θ and the lower branches to negative θ. For τsC 10 the
asymmetry of the w, θ curve, as measured by the difference ∆ω¯ω(θ)®ω(®θ) between
the corresponding values of ω belonging to these two branches is negligible. In this case
the slopes of both branches are close to the value 0.5(1®γ#)}(1γ#) prevailing for
inertialess particles (see (12)). As τs increases, so do the asymmetry and ∆ω, until the
latter reaches its maximum at about τs¯ 100–200 for γ¯ 0.5 and τs¯ 500–1000 for
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γ¯ 0.2, both corresponding to γ#τsC 20–50. Beyond this value of γ#τs, ∆ω decreases
again, together with the inclination slope of both branches. Physically this means that
an inertial rotating particle after passing the perpendicular (with respect to the wall),
or ‘upright ’, orientation θ¯ 0 will not regain its angular velocity, which prevailed for
θ! 0. This is in contrast with the behaviour of inertialess spheroids, which always
remain in equilibrium with the fluid. It thus follows that the inclination asymmetry of
ω is maximal at γ#τsC 20–50. In addition, as the inertia parameter increases beyond
this value, ω gradually becomes independent of θ (see figure 6b) and approaches 0.5 for
all γ. It turns out that the asymmetry of ω, θ curve is related to the rate of particle drift
towards the wall (see §5).

For inertialess particles near a wall ∆ω¯ 0, and no drift occurs. As long as the
inertia is in the range γ#τsE 20–50 the asymmetry of the curve ω®cos 2θ combined
with the asymmetry of w, stemming from the effect of the wall, yields the drift. With
increasing inertia parameter, ω becomes weakly dependent on θ, ∆ω diminishes, the
drift slows down and the amplitude of the z-oscillations decreases (see figure 2 f ). The
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diminution of ∆ω can be explained by noting that a heavy particle cannot significantly
change its angular velocity and its rotational pattern approaches a steady rotation
(with ω¯ s}2 far from the wall). As such, indefinite increase of τs will not cause any
further change of ω. This leads to the diminution of the asymmetry of the ω®cos 2θ
curve and to a decrease of the drift velocity w

d
(see figure 5).

Far from the wall and in the limit of small γ the effect of particle shape is lumped
within the parameter τsA(γ) (see Appendix A). The same is true in the limit of large
τs with γ¯ const., since the rotational velocity approaches a constant value, which is
independent of γ. In the limit of small γ, A(γ) is proportional to γ# (see the
Appendix). The rotation of spheroids near the wall (and also their drift velocity w

d
) is

governed by a similar parameter, namely γ#τsN(γ), where the function N(γ) includes
the effect of particle–wall interactions (see (14)–(16) below).

5. Approximate solution for small inertia

To get deeper insight into the mechanism responsible for the particle drift, we
investigate the solution of system (9) for small inertia. Towards this goal we construct
a solution in the form of an expansion in a power series of a small parameter ε,
proportion to γ#τs, to be explicitly found below. Define the following vectors :

F¯

E

F

F
z

F
x

L
y

G

H

, V¯

E

F

w

u

ω

G

H

, X¯

E

F

z

x

θ

G

H

,

respectively representing particle generalized forces, velocities and location, and a
square matrix G

G¯

E

F

0

1

0

1

0

0

0

0

(1γ#)}5

G

H

.

In terms of these quantities, the system (9) may be rewritten in the form

γ#τsR−"G
dV

dt
¯R−"F®V, dX}dt¯V. (13a, b)

The smallness of the particle inertia should be described both in terms of the parameter
γ#τs and the matrix R−"G. The value of the latter is characterized by its scalar norm.
For this purpose we further use the maximum norm, generically defined for any square
matrix A :

sAs¯ max
i=",#,$

3
$

j="

rA
i,j

r,

where i, j are the indices of the rows and the columns of A, respectively.
Let N(γ) be the upper bound of the norm of the matrix R−"G in the domain of

variation of z, θ, namely 0! z!¢, ®π}2! θ!π}2. Using the above we now define
a normalized resistance matrix

R
N

¯N(γ)R, (14)

which satisfies the inequality sR−"
N

Gs% 1, and allows (13a) to be rewritten in the form

εR−"
N

G
dV

dt
¯R−"F®V, (15)
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γ N(γ) γ#N(γ) τsrε="
¯γ−#N−"(γ)

0.2 0.154 0.00615 163
0.3 0.123 0.011 90
0.5 0.088 0.022 45
0.6 0.0769 0.0277 36
0.7 0.0681 0.0334 30

T 2. Values of N(γ), and γ#N(γ).

with the non-dimensional parameter ε identified as

ε¯γ#N(γ) τs. (16)

Table 2 presents several values of N(γ), and γ#N(γ).
The right-hand column in table 2 shows the value of τs for which the parameter ε

equals unity. Taking unity as an estimate of the radius of convergence of the small-ε
expansion solution, to be developed below, one can see that this solution is valid for
cases where τs may not be small.

The introduction of the function N(γ) and the above definition of ε clarify the effect
of the particle shape on its dynamics. This effect cannot be described only in terms of
the dimensionless parameter γ#τs, since γ is also implicitly embodied within the matrix
R. Indeed, the same value of γ#τs may correspond in one case to a spherical particle
(γ¯ 1, no drift), and also to a spheroid, in which case w

d
1 0. A physically meaningful

dimensionless form of the equation of motion is (15), rather than the first of (9) wherein
the effect of inertia is represented by the parameter ε¯N(γ)γ#τs. To support this
conjecture we considered the data shown in figure 5 in the form w

d
versus ε. As a result,

we found that the maximum drift velocity prevails at about ε¯N(γ)γ#τsE 4. For all
γ checked, the maximum value of w

d
diminishes with increasing γ and eventually

vanishes at γ¯ 1.
Assume now that V may be expanded in the power series of ε :

V(t,X, ε)¯ 3
¢

i=!

εiV (i)(t,X ), (17)

where V (i) (i¯ 0, 1, 2…) are functions to be determined. Substitution of (17) into (15)
yields the following equation for the zero-order solution V (!) :

RV (!)¯F,

which implies that V (!) is the velocity of inertialess particles.
The higher-order members of (17) satisfy the following equation:

®3
¢

i="

εiR−"
N

G
dV (i−")

dt
¯ 3

¢

i="

εiV (i). (19)

Note that V (!) depends on time only via the spatial coordinates X, which allows us to
write

dV� (!)

dt
¯

¥V (!)

¥x
j

dx
j

dt
¯V[¡V (!)¯ [V (!)εV (")…][¡V (!), (20)

where ¡ here denotes the generalized gradient operator in the (x, z, θ) space. The above
equation in combination with (15) gives the following solution for the first-order
function V (") :

®R−"
N

GV (!)[¡V (!)¯V ("). (21)
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F 7. Coefficient functions of small-inertia solution, a}c¯ 0.2: (a) w(!) ; (b) ω(!).
*, z¯ 2.0; D, z¯ 1.5; ^, z¯ 1.2; , z¯ 1.03.
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F 8. Coefficient functions of small-inertia solution, a}c¯ 0.2: (a) w(") ; (b) ω(").
*, z¯ 2.0; D, z¯ 1.5; ^, z¯ 1.2; , z¯ 1.03.

Since V (!) is explicitly independent of the coordinate x, the dot product term in (21)
may be rewritten in the form

V (!)[¡V (!)¯

E

F

¥w(!)}¥z
¥u(!)}¥z

¥ω(!)}¥z
¥w(!)}¥θ
¥u(!)}¥θ

¥ω(!)}¥θ

G

H

0u(!)

ω(!)
1 . (22)

The equations for the higher-order members may be obtained from (19) in a similar
way, by preserving the dependence on (z, θ) only:

®R−"
N

G(V (!)[¡V (")V (")

"
[V (!))¯V (#), (23)

®R−"
N

G(V (!)[¡V (#)V (")[¡V (")V (#)[¡V (!))¯V ($), etc. (24)

Equations (18), (21), (23) and (24) were solved numerically in the ranges of
parameters z! 10, ®π}2! θ!π}2. Figures 7 and 8 show the components w(!), ω(!),
w("), ω(") as functions of orientation at different values of z. The zero-order functions
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in fact represent the instantaneous ‘ lift ’ and rotational velocities of inertialess particles
(Gavze & Shapiro 1997). One can see that ω(!) and w(") are symmetric functions, and
ω(") and w(!) antisymmetric functions, of θ. This observation may be generalized to
claim that ω(n) and w(n+") are symmetric for even n and antisymmetric for odd n.

We further use the kinematic parameters represented within the coefficient functions
of expansion (17) to estimate the particle drift towards the wall. Consider a particle
rotating at a certain distance z from the wall. We will estimate the drift by calculating
the particle ‘virtual displacement’ in the z-direction from t¯ 0, corresponding to
θ¯®π}2, up to the current time t :

∆z(t)¯& t

!

wr
z=const

dt. (25)

In the above the integration is performed with w evaluated at a constant z, which in
fact does not yield the true drift, since the particle centre moves in an oscillatory
manner with increasing z. However, bearing in mind the smallness of the drift velocity
and the relatively weak dependence of w on z, the above expression can be used as a
fair estimate of the true drift.

Changing the integration variable dt¯dθ}ω in (25) one obtains

∆z(θ)¯&
θ

−π/#

w

ω)
z=const

dθ. (26)

Substituting (17) in the term w}ω and expanding it in powers of ε, one obtains

w

ω
¯

δz(!)

δθ
ε

δz(")

δθ
ε#

δz(#)

δθ
Iεn

δz(n)

δθ
I, (27)

wherein

δz(!)

δθ
¯

w(!)

ω(!)
, (28)

δz(")

δθ
¯

w(")

ω(!)
®

ω(")w(!)

(ω(!))#
, (29)

δz(#)

δθ
¯

w(#)

ω(!)
®

ω(")w(")ω(#)w(!)

(ω(!))#


(ω("))#w(!)

(ω(!))$
, etc. (30)

Bearing in mind the symmetry properties of V (i), one can easily show that δz(n)}δθ is
an antisymmetric function of θ for even n and a symmetric function for odd n.

Clearly, the antisymmetric terms represented by δz(!)}δθ, δz(#)}δθ do not contribute
to the virtual drift, as expressed by (26), since the corresponding integrals over the
orientation vanish. It is only the terms with odd n : δz(")}δθ, δz($)}δθ, etc., that may
cause a drift. Figure 9(a, b) shows the contributions ∆z(n), n¯ 0, 1 to the virtual drift,
as functions of θ. The displacement of inertialess particles ∆z(!) vanishes after a cycle,
i.e. at θ¯π}2, as does ∆z(#). On the other hand, the first-order contribution ∆z(") to
the virtual displacement does not vanish upon completion of a cycle, but rather obtains
negative values, thereby indicating the existence of a non-zero particle drift towards the
wall. A similar behaviour was obtained for ∆z($) (not shown here).

Examining expression (29) for the leading first-order contribution to the virtual drift,
one can see that the inertial drift is caused by two terms: the first term, w(")}ω(!), is
associated with the effect of inertia on the instantaneous lift velocity w, and the second
term is associated with the effect of inertia on particle rotational velocity ω. Figures 7
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F 9. Drift function of small-inertia solution, a}c¯ 0.2: (a) zero-order approximation,
(b) first-order approximation. *, z¯ 2.0; D, z¯ 1.5; ^, z¯ 1.2; , z¯ 1.03.

and 8 show that the inertia-dependence of the lift velocity causes particle drift towards
that wall (negative drift), whereas the inertia dependence of the rotation velocity causes
drift from the wall (positive drift).

Consider the negative drift caused by the inertia-dependence of the instantaneous lift
velocity, represented by w("). To clarify its origin consider particle motion from
θ
"
¯®π}2 (when its longer axis is parallel to the wall) to the upright orientation θ

#
¯ 0

(see figures 7 and 8). At θ
"
the particle has zero first-order rotational and lift velocities.

At θC®π}4, w(") has a negative maximum and vanishes again at θC®π}8. Therefore
the inertia slows down the particle rise during its motion from θ

"
up to about

θ¯®π}8, and accelerates its rise during the rest of the period (see figure 8a). Since in
the former period the particle has a smaller angular velocity than during the latter
period (see figure 7b), the total effect of inertia on w is to cause the negative lift
tendency, i.e. towards the wall.

Consider now the positive drift caused by the effect of inertia on particle rotational
velocity, represented by ω("). The effect of inertia is to slow down particle rotation (ω(")

is negative) for negative angles of attack (from θ
"
¯®π}2 to θ

#
¯ 0) and to accelerate

its rotation for positive angles of attack (see figure 8b). In the former period inertialess
particles drift away from the wall and in the latter period towards the wall mainly due
to the lift force F

z
. Hence, as a result of the inertia effect on rotation, the particle has

less time to go down during the latter period (with positive angles of attack) and more
time to go up during the former period, which sums to yield the upward drift tendency.

It turns out that of the two tendencies described above, the lift towards the wall
caused by w("), i.e. by the inertia dependence of the instantaneous lift velocity, is the
dominant phenomenon. Analysis of the terms of different orders in particle trajectories
shows that for ε% 0.4 the main contribution is given by the first-order approximation.
This clarifies the results on the drift velocity, given in figures 3 and 4, showing that for
τs! 80, w

d
changes almost linearly with τs for γ! 0.5. For τs! 10 this is true for

almost all values of γ. Indeed, in the above range of τs the main contribution to the
drift is given by the first-order term of expansion (17).

Equation (15) can be used to quantify the role of the initial conditions, i.e. particle
initial orientation and position, on its trajectory. These initial data are ‘ forgotten’
during one rotational period T, if ε, appearing on the left-hand side of (15) is less than
T. For negligible inertia T¯π(γ1}γ), and T¯ 2π for large inertia. For γ¯ 0.2 the
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condition ε!T implies that τs! 2500 (see table 2). Therefore the effect of the initial
conditions could be observed only at very large τs (see figure 2( f ), where τs¯ 5000),
which is nevertheless, achievable for Stokesean particles, i.e. moving with Re less than
unity (see §6 below).

6. Discussion and estimates

We analysed the motion of non-spherical particles in a shear flow near a plane wall, as
governed by the combined effect of the particle shape, the wall effect and the particle
inertia. The fluid inertia is neglected and the flow is assumed to satisfy the Stokes
equation. Particle trajectories are computed from the equations of their rotation–
translational motion. An efficient numerical method is employed for the calculation of
trajectories. This method is based on pre-calculation of the hydrodynamic forces acting
on a particle at different locations and orientations. A generalized non-dimensional
inertia parameter, governing the particle motion, is defined. This parameter, which
takes into account the particle shape, is the product of the particle relaxation time,
shear rate and a non-dimensional function dependent on the particle resistance matrix
near the wall.

The combined effect of the particle non-sphericity and of the wall proximity creates
a complex system of hydrodynamic forces and torques acting on the spheroids. These
interactions in combination with particle inertia result in particle drift towards the wall.
This drift stems from the orientational asymmetry of the particle angular velocity and
of the cross-stream velocity component w, introduced by the inertial effect. The drift
is observed even for particles with very small inertia. For all γ the drift velocity has a
maximum at about the same value of the generalized inertia parameter ε¯γ#N(γ)τs.
Beyond the maximal value of εC 4 the drift velocity diminishes again.

Our calculations and analysis show that prolate spheroidal particles always drift
towards the wall. An interesting question is whether all non-spherical particles drift
towards the wall, or alternatively, are there particle shapes which drift in the opposite
direction. To answer this question extensive calculation should be performed, including
in particular oblate spheroidal particles.

The order of magnitude of the (dimensional) maximal drift force of particles with
a}c¯ 0.2–0.7 as elucidated from figure 5, prevails for γ#τs¯ 20–80 and is given by

w
d
¯ (1–3)¬10−$cs.

For neutrally buoyant particles, where gravity does not influence particle motion the
present analysis does not apply. This is because we neglected any influence of the fluid
inertia, while accounting for the particle inertia. For airborne particles such an
assumption is reasonable due to the smallness of the air-to-particle density. When the
fluid density is comparable with that of the particle, both the flow and the particle
inertia should be taken into account. In order to use the creeping flow approximation
for neutrally buoyant particles, one should, therefore keep the parameters τs well
below unity. In this range the drift velocity is (see figure 3) w

d
C 10−&cs.

We will estimate the value of the particle drift in the shear flow within the laminar
sublayer of a turbulent air flow in a pipe. Taking the mean air velocity as 15 m s−" and
the pipe diameter as 0.1 m, one obtains the shear rate s of about 1500 s−". For this shear
rate the drift velocity of spheroidal particles of density close to that of water and having
the sizes 1, 10 and 30 µm are listed in table 3. For comparison we also list the
characteristic Pe! clet number, based on the particle drift, as well as the gravitational
velocity and the lift velocity induced by fluid inertia in the shear flow, both calculated
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Particle
size c
(µm)

Reynolds
number,

Re¯ c#s}ν

Non-
dimensional
relaxation
time, τs

Drift
velocity
(µm s−")

Drift
Pe! clet

number
�
d
c}D

Gravitational
settling
velocity
(µm s−")

Velocity
induced by
flow inertial

(µm s−")

1 0.0001 0.42 0.006 0.00044 150 0.33
10 0.01 45 0.6 4.4 14,000 33
30 0.09 380 144 9500 135,000 300

T 3. Drift velocity of spheroidal particles in air at atmospheric pressure : ρ
p
}ρ¯ 1000, a}c¯ 0.3,

z}c¯ 1.5 shear rate s¯ 1500 s−", compared with the Brownian diffusivity and gravitational settling
velocity of a sphere with diameter c having the same mass density.

for a spherical particle of radius c. The cases Pej 1 and Pei 1 respectively
correspond to the situations where the drift velocity is larger and smaller than the
characteristic velocity of the Brownian motion.

The flow-inertia induced lift has been calculated according to the formula (Saffman
1965)

�
i
¯

6.46�
r
cs"/#

6πν"/#
, (31)

where �
r
is the particle–fluid relative velocity, calculated near the wall according to the

Goldman, Cox & Brenner (1967) expression

�
r

sz
¯ 1®

0.7431

0.6376®0.200 ln (z}c®1)
, z}cU 1. (32)

One can see that for 1 and 10 µm particles the drift velocity is much smaller than the
gravitational settling velocity in still air and the lift velocity. The drift of the 1 µm
particle is also much slower than the diffusional transport associated with the
Brownian motion of a comparable size sphere, as expressed in table 3 by the
characteristic Pe! clet number. For 10 µm spheroids the drift velocity is comparable to
the Brownian velocity. The 30 µm particles have much larger drift velocity which
exceeds by about 1000 times the characteristic Brownian velocity of comparable
spheres. On the other hand, the drift of this particle is comparable to the lift velocity
induced by the flow inertia. One can see that the spheroidal particles considered in table
3 are sufficiently small so that the characteristic Reynolds associated with the velocity
shear is much smaller than unity, which justifies the applicability of the present
analyses performed with negligible fluid inertia. Note that the maximal values of τs
achievable for Stokesean particles (Re% 1) may be as large as 5000, which, for example
prevails for a spheroid with c¯ 100 µm, shear rate as in table 3 and ρ

p
}ρ above 1500.

Such density ratios are characteristic of atmospheric aerosols (Friedlander 1977).
One thus concludes that the wall-induced drift velocity of non-spherical particles is

always smaller than the gravitational settling velocity. For particle sizes above 10 µm
this drift exceeds the characteristic Brownian velocity and becomes comparable to the
lift velocity induced by flow inertia.

The calculations performed so far hinge on the assumption that the particles’ motion
occurs in the (x, z) plane only. In fact the stability of such spheroidal particle motion
should be studied, to check the validity of our analysis.

Unfortunately no experimental data on the motion of sufficiently large non-spherical
particles in shear flows are available, which have been collected in the absence of
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gravity. The present theory and the data given in table 3 may be used to design such
experiments, where the wall-induced drift phenomenon could be best observed. In the
following section we contemplate the physical circumstances where this drift can
constitute an important mechanism governing transport of elongated particles.

7. Application to aerosol transport in microgravity

We have shown that our analysis is valid in the absence of external forces and for
negligible fluid inertia and large particle inertia. Such systems are indeed met in
practice and represented by aerosols in microgravity conditions. Aerosols particle sizes
range from several nanometres to about 100 micrometres. The lower size limit depends
upon the detection ability of modern measurement devices. The upper limit is imposed
by the gravitational losses in the specific aerosol system considered. Submicrometre
aerosol particles (those with the sizes less than about 0.5 µm) are significantly affected
the Brownian motion and have a very low sedimentation rate. The micrometre-size
aerosols, i.e. those exceeding 1–10 µm, have relatively large settling velocities, which
makes them difficult to handle in laboratory studies. An aerosol investigation in
microgravity conditions allows their settling velocity to be significantly reduced, and
thus allows several aerosol processes to be studied, which are otherwise very difficult
to investigate. Among these are several nonlinear phenomena, which have been proven
to be very sensitive to gravitation. These include aerosol nucleation, coagulation,
chemical reactions, and material synthesis via aerosol routes, such as hydrolysis,
pyrolysis, photolysis, thermophoresis, etc. (Oostra et al. 1996, 1997).

The effect of reduced gravity on aerosol behaviour is two-fold. First, the absence of
gravity modifies the velocity field of the carrier gas. In particular, flows induced by the
buoyancy force, whenever the difference in the air density prevails, do not take place
in the microgravity conditions. Secondly, the deposition rate of micrometre aerosol
particles in microgravity is so low that they actually remain airborne indefinitely. This
means that the concentration of such particles in air is significantly higher than that
prevailing in gravity conditions. This is very important in orbital manned space
stations, where aerosol particles are constantly produced in the course of various
activities. Since they do not settle fast enough the risk of their inhalation by humans
or animals is large. The risk assessment for these particles being deposited in the
respiratory tract involves evaluation of the particle deposition rates. Normally the
deposition of the relatively large micrometre particles is dominated by gravitation in
the alveolar region and inertia in the airway bifurcation areas (Vincent 1995;
Bala' sha' zy & Hofmann 1993; Kim & Iglesias 1989). The latter mechanism dominates
the deposition rate of particles with sizes 1–10 µm in the microgravity conditions.

Non-spherical particles, in particular fibrous aerosols, have been identified as a
special case in occupational health studies because of the serious risks associated with
their inhalation. The deposition of such particles in human airways in the absence of
gravitation has been attributed mainly to geometric interception in the bifurcation
regions (Vincent 1995). In this respect, the inertial drift of non-spherical particles
evaluated in this study constitutes an additional mechanism which can cause and even
dominate their deposition in the tracheobronchial tract. Our model is applicable for
calculation of deposition velocities, caused by the particle drift, in the absence of
gravitation. Indeed, for the highest possible breathing rates (of about 30 litres per
minute), the shear rates in the large airways (just below the larynx) are well below
1000 s−", which for particles of as large as 10 µm yields Re below 0.01. On the other
hand, as shown in table 3, for the particles above 10 µm the effect of the wall-induced
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drift prevails over that of Brownian motion and competes with the lift velocity induced
by air inertia.

This research was supported by the Fund for the Promotion of Research at the
Technion.

Appendix. Equation of rotation of spheroidal particles far from the wall

The equation of particle rotation is the third equation of the system (5). Far from
the wall the coupling components Cαβ vanish and the equation takes the following non-
dimensional form: (primes are omitted) :

γ#τs

5
(1γ#)

dω

dt
¯L

y
®Ω

yy
ω. (A 1)

The rotation tensor component Ω
yy

is

Ω
yy

¯
16πγ#

3

1γ#

γ#αβ
, (A 2)

where

α¯
1

1®γ#

®
γ#

2(1®γ#)$/#
ln 91(1®γ#)"/#

1®(1®γ#)"/#: , (A 3)

β¯®
2γ#

1®γ#


γ#

(1®γ#)$/#
ln 91(1®γ#)"/#

1®(1®γ#)"/#: . (A 4)

The torque acting on a particle is (see Appendix A of Gavze & Shapiro 1997)

L
y
¯

Ω
yy

1γ#

(cos# θγ# sin# θ). (A 5)

Substituting L
y

and Ω
yy

in equation (A1) and rearranging terms, one gets

τsA(γ)
dω

dt
ω¯

1

2 0
1®γ#

1γ#

cos 2θ11 , (A 6)

where

A(γ)¯
3(γ#αβ)

80π
. (A 7)

Examination of expressions (A3) and (A4) for α and β shows that in the limit of small
γ the effect of particle shape on its rotation is governed by the parameter A(γ)τs, with
A(γ) being proportional to γ#.

REFERENCES

A, B. & A, S. 1995 The effect of fiber inertia on its orientation in a shear flow with
application to lung dosimetry. Aerosol Sci. Technol. 23, 282–290.

B' ' , I. & H, W. 1993 Particle deposition in airway bifurcations – I. Inspiratory flow.
1993 J. Aerosol Sci. 24, 745–772.

B, D., F, M., S, M. & G, C. 1998 Motion of spheroidal particles in
vertical shear flows. Phys. Fluids 10, 86–100.

F, J., H, P. Y. & J, D. D. 1995 Dynamic simulation of the motion of capsules in
pipelines. J. Fluid Mech. 286, 201–227.



Motion of inertial spheroidal particles in a shear flow 79

F, J. & J, D. D. 1995 The unsteady motion of solid bodies in creeping flows. J. Fluid Mech.
303, 83–102.

F, S. K., 1977 Smoke, Dust and Haze. Fundamentals of Aerosol Beha�ior. J. Wiley & Sons.

G, E. & S, M. 1996 Sedimentation of spheroidal particles in vertical shear flow. J. Aerosol
Sci. 27, S585–586.

G, E. & S, M. 1997 Particles in a shear flow near a solid wall : Effect of nonsphericity on
forces and velocities. Intl J. Multiphase Flow 23, 155–182.

G, A. J., C, R. J. & B, H. 1967 Slows viscous motion of a sphere parallel to a plane
wall II. Couette flow. Chem. Engng Sci. 22, 653–660.

H, J. & B, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.

H, B. P. & L, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional
flows. J. Fluid Mech. 65, 365–400.

H$ , W. 1993 Aerosols and microgravity. Ad�. Colloid Interface Sci. 46, 49–57.

H$ , W. 1996 Aerosol experiments under microgravity conditions. ESA Symp. Proc. on Space
Station Utilization, ESOC, Darmstadt, December 1996, pp. 309–312.

H, P. Y., F, J. & J, D. D. 1994 The turning couples on an elliptic particle settling in
a vertical channel. J. Fluid Mech. 271, 1–16.

J, G. B. 1922 The motion of Ellipsoidal particles immersed in viscous fluid. Proc. R. Soc. Lond.
A102, 161–179.

K, A., G, H. & M, S. G. 1963 Axial migration of particles in Poiseuille flow.
Nature 200, 159–160.

K, A., G, H. & M, S. G. 1966 The flow of suspensions through tubes. V Inertial
effects. Can. J. Chem. Engng 44, 181–193.

K, C. S. & I, A. J. 1989 Deposition of inhaled particles in bifurcating airway models : I
Inspiratory deposition. J. Aerosol Med. 2, 1–14.

O, W., B, D., M, J. C. M., S, B. & W, J. 1996 Measurement
of soot production of a candle under microgravity conditions. J. Aerosol Sci. 27, S715–716.

O, W., M, J. C. M., S, B. & B, D. 1995 A comparison of
thermophoresis in a laminar flow under gravity and microgravity conditions. J. Aerosol Sci. 26,
S317–318.

S, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400; and
corrigendum 31 (1968), 624.

S, J. A. & H, E. J. 1989 The inertial migration of a sphere in Poiseuille flow. J. Fluid
Mech. 203, 517–524.

S! , G. & S, A. 1962a Behaviour of macroscopic rigid spheres in Poiseuille flow. Part
1. Determination of local concentration by statistical analyses of particle passages through
crossed light beams. J. Fluid Mech. 14, 115–135.

S! , G. & S, A. 1962b Behaviour of macroscopic rigid spheres in Poiseuille flow. Part
2. Experimental results and interpretation. J. Fluid Mech. 14, 136–157.

S-S, M. 1993 The motion of an elliptical cylinder in channel flow at low Reynolds
numbers. J. Fluid Mech. 257, 575–596.

V, J. H. 1995 Aerosol Science for Industrial Hygienists. Pergamon.

Y, S. M. & L, G. L. 1984 Particle motion in Stokes flow near a plane fluid-fluid interface. Part
2. Linear shear and axisymmetric straining flows. J. Fluid Mech. 149, 275–304.


